

NPQ2107-SM

27.5 - 31 GHz GaN 17 W Power Amplifier

Product Description

The Nxbeam NPQ2107-SM is a Ka-band high power amplifier fabricated in 0.2um GaN HEMT on SiC in a QFN package. The amplifier operates from 27.5 to 31 GHz and provides an average of 17 W saturated output power, 29% PAE, and 22 dB of linear gain. The QFN is designed for easy system integration with RF input and output ports matched to 50 ohms.

NPQ2107-SM

Applications

- Ka-band Satellite Communications
- 5G Infrastructure
- Point-to-Point/Multipoint Digital Radios

Key Features

Frequency: 27.5 – 31 GHzLinear Gain (Ave.): 22 dB

Psat (Ave.): 17 WPAE (Ave.): 29%

Electrical Specifications

Test Condition: Vd = 26 V, Idq = 0.9 A, CW Performance, Typical Performance at 25°C

Parameter		Min	Typical	Max	Unit
Frequency		27.5		31	GHz
Gain (Small Signal)	27.5 GHz		21.6		
	29 GHz		22.3		dB
	31 GHz		21.0		
	27.5 GHz		43.0		
Output Power (at Psat, Pin=27.1 dBm)	29 GHz		42.8		dBm
	31 GHz		42.0		
PAE (at Psat, Pin=27.1 dBm)	27.5 GHz		31.1		
	29 GHz		30.7		%
	31 GHz		27.0		
Power Gain (at Psat, Pin=27.1 dBm)	27.5 GHz		15.9		
	29 GHz		16.1		dB
	31 GHz		15.0		
Input Return Loss	27.5 GHz		8		
	29 GHz		9		dB
	31 GHz		10		
Output Return Loss	27.5 GHz		11		
	29 GHz		22		dB
	31 GHz		16		

Maximum Quiescent Bias

Parameter	Max	Unit
Drain Voltage (Vd1,2, Vd3)	28	٧
Drain Current (Id1,2)	405	mA
Drain Current (Id3)	1150	mA

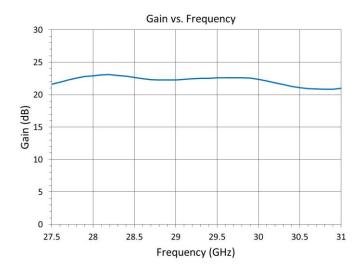
Maximum quiescent bias represents the operational bias used during reliability life testing. Biasing the part at or below this bias ensures reliability will be bound by the published reliability results.

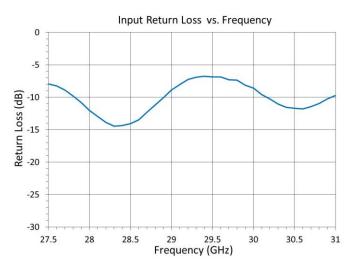
Datasheet Revision: August 30, 2025 Page 1 of 8

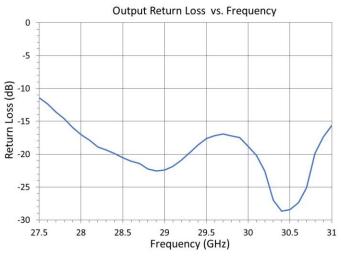
Absolute Maximum Ratings (Temp. = 25°C)

Parameter	Max	Unit
Drain Voltage (Vd1,2, Vd3)	28	٧
Drain Current (Id1,2)	1020	mA
Drain Current (Id3)	2880	mA
Gate Voltage (Vg1, Vg2, Vg3)	0	V

Absolute maximum ratings represent the maximum current under power saturation conditions.


Recommended Quiescent Operating Condition


Parameter	Value	Unit
Drain Voltage (Vd1,2, Vd3)	20 - 27	V
Drain Current (Id1,2)	up to 405	mA
Drain Current (Id3)	up to 1150	mA
Gate Voltage (Vg1, Vg2, Vg3) (Typical Range)	-5.5 to -3.5	V


Gate voltage will vary based on desired current per stage

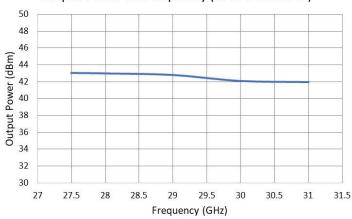
Small Signal Performance

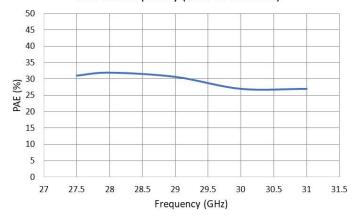
Test Condition: Vd = 26 V, Idq = 0.9 A, (CW Performance, Typical Performance at 25°C)



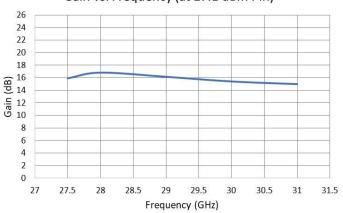
Datasheet Revision: August 30, 2025 Page 2 of 8

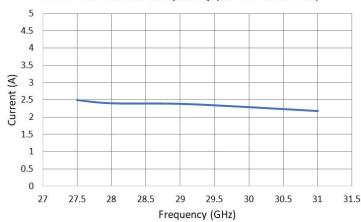
Phone: 949-656-2883




Large Signal Performance

Test Condition: Vd = 26 V, Idq = 0.9 A, Pin = 27.1 dBm (CW Performance, Typical Performance at 25°C)


Output Power vs. Frequency (at 27.1 dBm Pin)

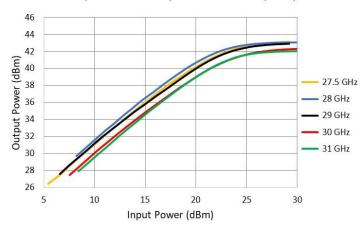

PAE vs. Frequency (at 27.1 dBm Pin)

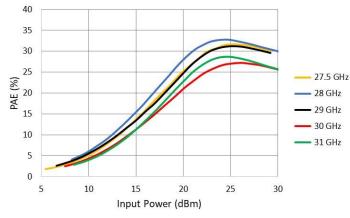
Gain vs. Frequency (at 27.1 dBm Pin)


Drain Current vs. Frequency (at 27.1 dBm Pin)

Datasheet Revision: August 30, 2025 Page 3 of 8

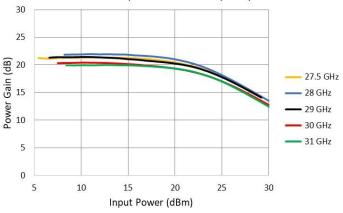
www.nxbeam.com info@nxbeam.com Phone: 949-656-2883



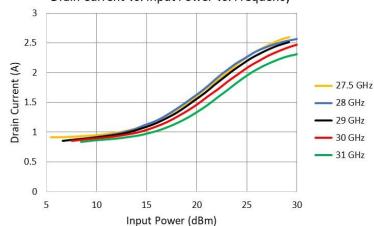

Large Signal Performance

Test Condition: Vd = 26 V, Idq = 0.9 A at 25°C, CW Performance

Output Power vs. Input Power vs. Frequency



PAE vs. Input Power vs. Frequency

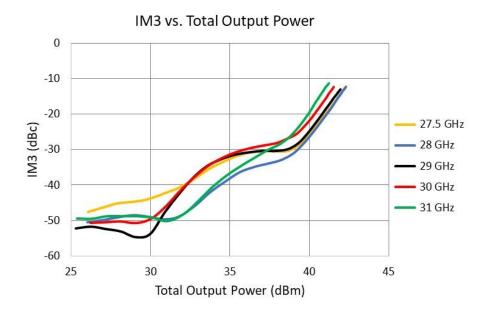


www.nxbeam.com

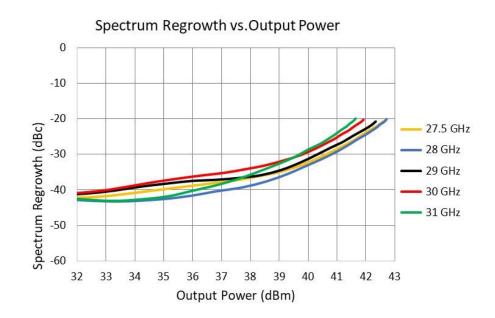
Power Gain vs. Input Power vs. Frequency

Drain Current vs. Input Power vs. Frequency

Datasheet Revision: August 30, 2025 Page 4 of 8



Phone: 949-656-2883


2-Tone Linearity Performance

Test Condition: Vd = 26 V, Idq = 0.9 A, 10 MHz Tone Spacing, Temperature = 25 °C

Spectral Regrowth Performance

Test Condition: Vd = 26 V, Idq = 0.9 A, QPSK, 10 MSPS, Alpha = 0.2, Temperature = 25 °C

Datasheet Revision: August 30, 2025 Page 5 of 8

www.nxbeam.com _____info@nxbeam.com _____Phone: 949-656-2883

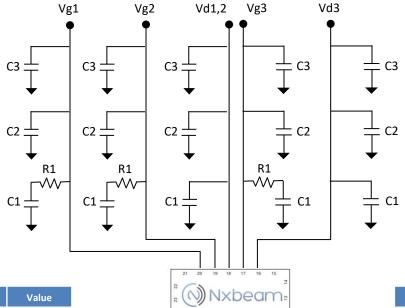
Resistor

R1

10 Ω

RF Input —

27.5 – 31 GHz GaN 17 W Power Amplifier


Connection and Off-Chip Components

The following diagram shows the recommended off-chip components. The off-chip components should be located as close to the part as possible. Please consult with Nxbeam on other off-chip network variations.

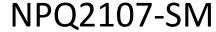
Pad Num.	Function
1	GND
2	GND
3	GND
4	GND
5	GND
6	GND
7	GND
8	GND
9	GND

Pad Num.	Function
10	GND
11	RF OUT
12	GND
13	GND
14	GND
15	GND
16	Vd3
17	Vg3
18	Vd1,2

Pad Num.	Function
19	Vg2
20	Vg1
21	GND
22	GND
23	GND
24	GND
25	RF IN
26	GND
27	GND
28	GND

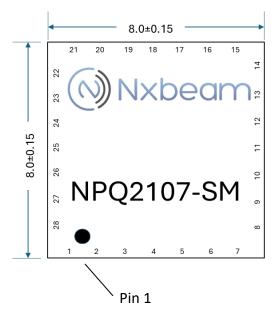
 Capacitor
 Value

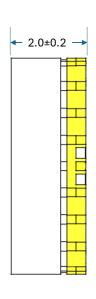
 C1
 0.01 μF

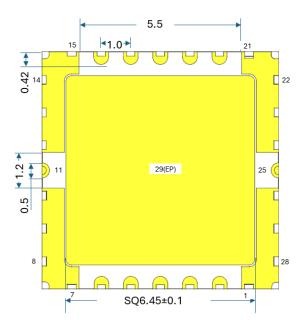

 C2
 1 μF

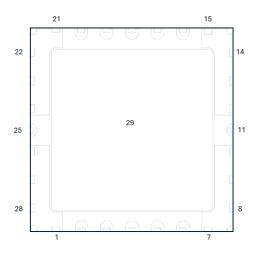
 C3
 10 μF

Datasheet Revision: August 30, 2025 Page 6 of 8


NPQ2107-SM


- RF Output





Dimensions (all dimensions in mm)

Datasheet Revision: August 30, 2025 Page 7 of 8

www.nxbeam.com info@nxbeam.com Phone: 949-656-2883

NPQ2107-SM

27.5 - 31 GHz GaN 17 W Power Amplifier

Bias Information

Bias-up Procedure:

- 1.) It is recommended that voltage and current limits be set on the power supplies prior to biasing the product, and that all supplies be properly grounded to the product.
- 2.) Apply a negative gate voltage of -8V to Vg1, Vg2, and Vg3 to ensure all devices are pinched off.
- 3.) Gradually increase the drain bias voltage (Vd1,2, Vd3) to the desired bias level but not to exceed the maximum voltage of 28 V.
- 4.) Gradually increase the gate voltages (Vg1, Vg2, Vg3) while monitoring the drain current until the desired drain current in each stage is achieved.
- 5.) Apply RF signal.

Bias-down Procedure:

- 1.) Turn off RF signal.
- 2.) Gradually decrease Vg1, Vg2, and Vg3 down to -8 V.
- 3.) Gradually decrease the drain voltages (Vd1,2, Vd3) down to 0 V.
- 4.) Gradually increase gate voltages (Vg1, Vg2, Vg3) to 0 V.
- 5.) Turn off supply voltages

ESD Sensitive Product

Important Information

Nxbeam Inc. reserves the right to update and change without notice the characteristic data and other specifications as they apply to this document. Customers should obtain and verify the most recent product information before placing orders. Nxbeam Inc. assumes no responsibility or liability whatsoever for the use of the information contained herein.

Datasheet Revision: August 30, 2025 Page 8 of 8

